建设项目环境影响报告表

项目名称: ___ 年加工 1000 吨工程机械金属件项目____

建设单位(盖章): 保定跃卓金属制品有限公司

编制日期 2020年11月

《建设项目环境影响报告表》编制说明

《建设项目环境影响报告表》由具有从事环境影响评价工作资质的单位编制。

- 1、项目名称——指项目立项批复时的名称,应不超过30个字(两个英文字段作一个汉字)。
 - 2、建设地点——指项目所在地详细地址,公路、铁路应填写起止地点。
 - 3、行业类别——按国标填写。
 - 4、总投资——指项目投资总额。
- 5、主要环境保护目标——指项目区周围一定范围内集中居民住宅区、 学校、医院、保护文物、风景名胜区、水源地和生态敏感点等,应尽可能 给出保护目标、性质、规模和距厂界距离等。
- 6、结论与建议——给出本项目清洁生产、达标排放和总量控制的分析结论,确定污染防治措施的有效性,说明本项目对环境造成的影响,给出建议项环境可行性的明确结论。同时提出减少环境影响的其他建议。
- 7、预审意见——由行业主管部门填写答复意见,无主管部门项目,可不填。
 - 8、审批意见——由负责审批该项目的环境保护行政主管部门批复。

建设项目基本情况

项目名称	年加工 1000 吨工程机械金属件项目							
建设单位		保定跃	卓金	禹制品	占有限	公司		
法人代表		张洪奎		联系	人系	引	兴 奎	
通讯地址		保定市	徐水	区遂场	战镇石	桥村		
联系电话	1378	80424800	传	真		邮政编码	072550	
建设地点	保定市徐水区遂城镇石桥村村北							
立项审批 部门	保定市徐水	区发展和改革局	批	准 文	号	徐水发改备字[2020]127 号		
建设性质		新建		业类别 代码	及	机械零部件加工 C3484		
占地面积 (平方米)	33	342.09	1	化面积 平方米		/		
总投资 (万元)	320	其中环保投 资(万元)		9.5		环保投资 占总投资 比例	2.97%	
评价经费 (万元)		/	预	预期投产 2021 年 3 月 日期		年3月		

工程内容及规模:

1、项目由来

在工农业稳定发展、城市化进程持续推进的情况下,工程机械行业在加快结构调整,培育发展新动能,实现新旧功能转换和增长方式转变方面迈出了可喜的一步。为进一步推动工程机械实现高质量发展创造了条件。为了满足市场需求,保定跃卓金属制品有限公司拟投资 320 万元建设"年加工 1000 吨工程机械金属件项目"(以下简称本项目)。

根据《中华人民共和国环境影响评价法》、《国务院关于修改〈建设项目环境保护管理条例〉的决定》(中华人民共和国国务院令 第 682 号),本项目应进行环境影响评价。根据《建设项目环境影响评价分类管理名录》(环境保护部令第 44 号)及其修改单(生态环境部令第 1 号),本项目属于"二十二、金属制品业"中的"67 金属制品加工制造---其它(仅切割组装除外)",应编制环境影响报告表。

保定跃卓金属制品有限公司于 2020 年 10 月委托河北六合安顺环境科技有限公司承 担本项目环境影响报告表的编制工作(委托书、承诺书见附件 3、附件 4)。接受委托后, 我公司立即组织技术人员开展了现场踏勘、资料收集等工作,并按照《建设项目环境影 响评价技术导则总纲》的规定编制完成了本项目环境影响报告表。

2、项目概况

- (1) 项目名称: 年加工 1000 吨工程机械金属件项目。
- (2)建设单位:保定跃卓金属制品有限公司,统一社会信用代码:91130609MA0FGKAU1E。
 - (3)项目投资:项目总投资320万元,其中环保投资9.5万元,占总投资的2.97%。
- (4)建设地点:本项目位于保定市徐水区遂城镇石桥村村北,中心地理坐标为北纬 39°03'47.08",东经 115°33'34.51"。项目地理位置见附图 1。

本项目东侧、北侧为耕地,南侧、西侧为村路。本项目西南距石桥村 340m,东南 距谢坊营村 560m,距本项目最近的敏感点为西南侧 340m 的石桥村,项目周边关系见 附图 2。

- (5)项目占地:保定跃卓金属制品有限公司租赁现有厂房及办公楼,占地面积 3342.09 m²(租赁协议见附件7),保定市自然资源和规划局徐水区分局为本项目出具了 地类意见,本地块性质为村庄(城镇村及工矿用地),见附件6。
 - (6) 产品方案及生产规模

产品方案为工程机械金属件加工, 生产规模为 1000t/a。

(7) 项目建设内容

本项目主要建设内容包括:生产车间、办公楼等,购置二氧化碳气体保护焊、立式金刚镗床、三辊卷板机、剪板机等设备。

	表 1 本坝日组成及土安建筑物一览表			
类别	工程组成	建设内容		
主体工程	生产车间	建筑面积 2000 m², 单层钢结构		
辅助工程	办公楼	办公楼建筑面积 108 m², 双层钢结构		
	供水	水罐车供给		
公用工程	供电	由石桥村电网提供		
	供暖	厂房不供暖,办公用房冬季采用空调供暖		
环保工程	切割、焊接工序产生的烟尘,经"集气罩+滤芯除尘器+ 废气治理设施 筒"处理后排放;抛丸机产生的颗粒物经自带除尘器处理 挥接工序共用排气筒排放			
	废水治理设施	无生产废水产生,职工生活盥洗水泼洒地面不外排		
	噪声治理	所有生产设备均安置在生产车间内,采取低噪声设备、基础减振、 厂房隔声等措施降噪,治理设施风机安置于厂区中间位置,选用低		

表 1 本项目组成及主要建筑物一览表

	噪声设备,并采取基础减振
	一般固体废物:边角料、除尘灰、不合格品收集后外售;生活垃圾 收集后由环卫部门统一清运处理。
固废处置	危险废物:废润滑油、废液压油、废包装桶、废抹布暂存危废间,
	定期交由有资质单位处置

(8) 平面布置

本项目厂区呈矩形布置,大门口位于厂区南侧,生产车间呈东西方向布置位于厂区 北部,办公楼位于厂区东南部,旱厕位于厂区西南角,危废间位于厂区西部,旱厕与车 间之间。项目平面布置见附图 3。

(9) 主要设备

本项目主要生产设备情况详见表 2:

表 2 项目主要生产设备

序号	设备名称	设备型号	数量(台)	备注
1	二氧化碳气体保护焊机	KR500	12	
2	立式金刚镗床	T716	1	
3	镗床	沈阳 T×6111D	1	
4	车床	CA6140	1	
5	十八	CW6163D	1	
6	钻床	Z3050×16	2	
7	行车	10t	1	
8	行车	2.8t	4	
9	三辊卷板机	W11-16×2000	1	
10	三辊卷板机	W11STNC-30×2500	1	
11	剪板机	Q11Y25×2500	1	
12	剪板机	HT12K16×4000	1	
13	折弯机	HT67K-250T	1	
14	自制折弯机		2	
15	叉车		1	
16	数控火焰切割机	GS12-4003	1	
17	数控火焰切割机	GS12-4200	1	
18	激光切割机	3000WG6025T	1	

19	压力机	YHD27-500T	1	
20	抛丸机	Q3780-4	1	
21	环保设备	_	1	
	合计			

(9) 原辅材料及能源消耗

表 3 项目原辅材料及能源消耗一览表

名称	年用量	备注
Q345B 钢板	710t/a	外购
NM360 钢板	320t/a	外购
	5t/a	20kg/盘
CO ₂ 气体	1000 瓶/a	25kg/瓶,厂区最大储存量为 20 瓶
氧气	1500 瓶/a	70kg/瓶,厂区最大储存量为 20 瓶
丙烷气	100 瓶/a	23kg/瓶,厂区最大储存量为 5 瓶
水	156m³/a	水罐车供给
电	11万 kW•h/a	当地电网提供

(10) 劳动定员和工作制度

本项目劳动定员 13 人, 年工作 300 天, 白班制, 每天工作 8 小时, 夜间不生产。

(11) 公用工程

①给、排水

本项目生产不用水,用水为职工生活用水,职工生活用水主要为盥洗废水。本项目 定员 13 人,职工全部为附近居民,不在厂区内食宿。参照《用水定额 第 3 部分:生活用水》(GB13/T 1161.3-2016),居民生活用水按 40L/人·d 计算,则职工生活用水量为 0.52m³/d(156m³/a)。用水由水罐车供给。

本项目生产不用水,因此无生产废水产生,产生的废水全部为职工盥洗废水。废水产生量按职工生活用水量的80%计算,则废水产生量为0.42m³/d(126m³/a)。职工盥洗废水量小且水质简单,泼洒地面不外排,厂区内设防渗旱厕,定期清掏用作农肥。

水平衡图见图1。

图 1 本项目水平衡图(单位: m³/d)

②供电

本项目生产、生活用电年耗电量约为 11 万 kW·h。

③供暖

本项目生产无需用热,办公室冬季采用空调供暖。

- (12)项目选址、产业政策、清洁生产符合性分析
- ①本项目位于保定市徐水区遂城镇石桥村北侧,中心地理坐标为北纬 39°03'47.08", 东经 115°33'34.51"。本项目周围无国家、省、市规定的重点文物保护单位、风景名胜区、革命历史古迹等环境敏感点。

本公司占地面积 3342.09 m², 保定市自然资源和规划局徐水区分局为本项目出具了地类意见,项目占地性质为村庄(城镇村及工矿用地)。因此,项目选址合理。

- ②本项目为机械零部件加工项目,对照《产业结构调整指导目录(2019年本)》,本项目不属于限值类、淘汰类,属于允许建设项目;项目不在《河北省新增限值和淘汰类产业目录(2015年版)》限值类与淘汰类之列;项目设备未列入工信部《高耗能落后机电设备(产品)淘汰目录(第一、二、三、四批)》。保定市徐水区发展和改革局为本项目出具了备案信息,备案编号:徐水发改备字[2020]127号。因此,项目建设符合国家和地方相关产业政策。
- ③本项目采用国内先进的生产技术和设备,污染物产生量小,资源利用率高,符合节能降耗、减污增效的清洁生产目标,环境效益显著。综上所述,本项目清洁生产水平处于国内先进水平,符合清洁生产要求。
 - (13)"三线一单"、"四区一线"符合性分析
- ①按照《"十三五"环境影响评价改革实施方案》(环环评[2016]95号)、《生态保护红线、环境质量底线、资源利用上线和环境准入负面清单编制技术指南(试行)》(环办环评[2017]99号),本项目"三线一单"符合性分析如下表。

主 4	"- /	- 单"符合	キンギ
7 5 4	·· — 2-t —	* 中、"'大十二'"	I/ L ∕ T / №TT

	1 3 4 10		
内容丨	内容分析	本项目情况	符合性
内谷	内谷分 析	本 坝目情况	

生态保护红线	是生态空间范围内具有特殊重要生态功能必须实行强制性严格保护的区域。相关规划环评应该将生态空间管控作为重要内容,规划区域涉及生态保护红线的,在规划环评结论和审查意见中应落实生态保护红线的管理要求,提出相应对策措施,除受自然条件限制,确实无法避让的铁路、公路、航道、防洪、管道、干渠、通讯、输变电等重要基础设施项目外,在生态保护红线范围内,严控各类开发建设活动,依法不予审批新建工业项目和矿产开发项目的环评文件。	本项目位于保定市徐水区遂城 镇石桥村北侧,所在地不属于生 态保护红线区,符合生态保护红 线要求(见附图 4)	符合
资源 利用 上线	资源是环境的载体,资源利用上线是各地区 能源、水、土地等资源消耗不得突破的"天花 板"。	本项目所用原材料为钢板、焊丝等;主要资源包括:水、电,能 耗量均不大,满足资源利用上限 的要求。	符合
环境 质量 底线	是国家和地方设置的大气、水和土壤环境质量目标,也是改善环境质量的基准线。项目环评应对照区域环境质量目标,深入分析预测项目建设对环境质量的影响,强化污染防治措施和污染物排放控制要求。	营运期通过采取各项污染防治 措施,污染物排放对环境质量影 响较小。	符合
环 境 准 入 负 面 清单	是基于生态保护红线、环境质量底线和资源 利用上线,以清单方式列出的禁止、限制等 差别化环境准入条件和要求	经对照《保定市主体功能区负面 清单》,本项目不在《保定市主 体功能区负面清单》中被规划的 限制开发区域和禁止开发区域	符合

②"四区一线"符合性分析

根据《保定市人民政府办公室关于加强自然保护区风景名胜区核心景区重点河流湖库管理范围饮用水水源地保护区周边地区建设管理的通知》(保政办函[2019]10号)要求:

- a、切实提高政治站位。全面加强以自然保护区、风景名胜区核心景区、重点河流 湖库管理范围、饮用水水源地保护区周边地区的建设管理,坚持绿色发展、留住绿水青山,为我市高质量发展提供有力保障。
- b、加强周边地区管理。各地要按照山水林田湖草系统保护的要求,将辖区内自然保护区、风景名胜区核心景区、重点河流湖库管理范围、饮用水水源地保护区周边2公里作为重点管理区域(不含城市、县城规划建设用地范围),严守生态红线,严格土地预审,严格规划管理,健全工作机制,确保自然保护区、风景名胜区核心景区、重点河流湖库管理范围、饮用水水源地保护区周边地区建设活动科学合理、规范有序。

根据保定市"四区一线"示意图(附图5),本项目占地不在自然保护区、风景名

胜区核心景区、重点河流湖库管理范围、饮用水水源地保护区范围内,符合"四区一线"要求。

与本项目有关的原有污染情况及主要环境问题:

本项目拟占厂房为原奶牛养殖车间,养殖奶牛 50 头,规模较小。牛舍恶臭采取合理搭配饲料,喷洒除臭剂等措施,从源头减少了恶臭的产生。牛舍地面每天定时覆盖稻草吸收粪污,并定期清运,用作农肥,奶牛转运后恶臭和粪污问题随之消失,经检测车间内土壤基本因子 45 项与特征因子监测结果低于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类建设用地筛选值,因此项目占地土壤环境状况良好。

建设项目所在地自然环境社会环境简况

自然环境简况(地形、地貌、气候、气象、水文、植被、生物多样性等):

1、地理位置

保定市徐水区隶属河北省保定市,地处太行山东麓,河北省中部,位于北纬 38°52′40″—39°09′50″,东经 115°19′06″—115°46′56″之间,徐水县东与容城县、安新县交界,南与满城县、清苑县为邻,西与易县接壤,北与定兴县相连。

本项目位于保定市徐水区遂城镇石桥村北侧,中心地理坐标为北纬北纬 39° 03'47.08",东经 115° 33'34.51"。所在地不属于自然保护区、风景名胜区、世界文化和自然遗产地、饮用水水源保护区等环境敏感区。

2、地质条件

保定市徐水区东西横跨两个不同的二级构造单元,即西部的丘陵山区及山麓地带属 山西断隆的一部分,东部的平原区则属华北断坳的一部分。徐水断凹属于华北断坳上的 四级构造单元。

境内的断裂属新华夏构造体系。在大王店以西的丘陵地区,发育有数条呈北北东或北东走向的正断层。在正村至高林村一线发育有隐伏的石家庄至正定深大断裂,是一个高角度的正断层。境内出露的地层较为简单,由老至新主要为中、上元古界震旦系和新生界地层。

3、地形地貌

保定市徐水区地处海河流域,属太行山东麓的山前冲洪积平原,总地势由西北向东南倾斜,平均海拔高度 20m,平均坡度千分之三、西部为太行山余脉的低山丘陵地区,面积达 91.2km², 占全区总面积的 12.61%, 地形标高一般在 50-150m 之间, 其中海拔 100m 以上的面积为 44.3km², 主要山峰有象山、釜山等,中部和东部为冲洪积扇组成的山路平原,总面积为 631.8km², 占徐水区总面积的 87.39%, 地势由西向东微倾,坡降为 1%左右,地形标高在 10-50m 之间,局部洼地标高小于 10m,境内最低点为李迪城村,海拔高度 8m,冲洪积扇间分布有大小不等的碟形洼地,总面积 143.6km², 占平原面积的 22.73%。

4、气候条件

保定市徐水区地处欧亚大陆东部,属东部季风温暖带半干旱气候区(干燥度 1.53), 大陆季风性气候特点明显,四季分明,光热资源充足。春季干燥多风,夏季炎热多雨, 秋季天高气爽,冬季寒冷少雪。

该区地面气流明显受太行山山脉影响,主导风向为 SSW,次主导风向为 NNE,近五年内,平均风速为 2.2m/s,春季平均风速最大,月平均风速均在 3m/s 以上,冬夏次之,均为 2.3m/s,秋季平均风速为 2.1m/s。历年来徐水县最大风速为 7.9m/s。年平均静风频率为 22.15%。

5、地表水系

保定市徐水区境内河流属于大清河南支水系,主要有漕河、瀑河、萍河、鸡爪河, 支流有曲水河、屯庄河、黑水沟等。

瀑河发源于易县狼牙山麓杨树岭,自发源地东下,在屯庄村北入徐水境内,流向东南,到前所营村东穿京广公路、107 国道,经县城转向东流,于葛村村西接纳黑水沟汇入,复向东南,穿大因镇到迪城村北进安新县境,后注入白洋淀。瀑河全长 73km,总流域面积 545km²,其中徐水区境内长 43.2km,流经 11 个乡镇,流域面积 295km²,河道平均宽度 80m,黄土河床较稳定。

本项目距其南侧的瀑河约 1050m。

6、水文地质

根据地质、地貌构造特征和地下水贮存条件,保定市徐水区可分为山丘区和山前倾斜平原区两个水文地质单元。

本区地下水主要接受大气降水及地下水侧向径流补给。地下水排泄以人为开采及地下径流为主。

7、土壤类型

保定市徐水区共有褐土、潮土两个土类, 六个亚类, 10个土属, 42个土种。京广铁路以西部分布着石灰性褐土、褐土性土; 铁路以东以脱沼泽潮褐土和潮褐土为主。其中褐土面积占全区土壤总面积的74.9%。

8、生态环境

保定市徐水区境内主要的野生植物包括杂草、菌类和苔藓,野生动物主要哺乳类如鼠、野兔、蝙蝠等,爬行类主要为蛇、蜥蜴、壁虎等,鸟类主要为麻雀、喜鹊、乌鸦、啄木鸟、杜鹃、猫头鹰等。两栖类主要为青蛙、蟾蜍、水蛇等。其他为昆虫、甲壳类等。 人工植被主要由农作物玉米、小麦、大豆、山药组成。

项目附近地表植被以人工种植的农作物玉米、小麦、果树、杨树等为主,野生植物

大多为草本植物,分布于路边及田埂等。

区内没有珍稀濒危动植物分布。

9、生态保护红线

生态保护红线主要分为重点生态功能区红线、生态敏感脆弱区红线及禁止开发区红线。

重点生态功能区红线指生态系统十分重要,关系全国或区域生态安全,生态系统 有所退化,需要在国土空间开发中限制进行大规模高强度工业化城镇化开发,以保持 并提高生态产品供给能力的区域。主要包括水源涵养、土壤保持、防风固沙、生物多 样性保护和洪水调蓄区。

生态环境敏感脆弱区红线指对外界干扰和环境变化具有特殊敏感性,极易受到不当开发活动影响而发生生态退化且难以自我修复的区域。主要包括土地沙化区、水土流失区、河湖滨岸带。禁止开发区指依法设立的各级各类自然文化资源保护区域,以及其他禁止进行工业化城镇化开发、需要特殊保护的区域主要包括九类,分别为自然保护区、饮用水水源保护区、清水通道、风景名胜区、地质公园、森林公园、湿地公园、水产种质资源保护区、生态公益林。

根据《河北省人民政府关于发布<河北省生态保护红线>的通知》(冀政字〔2018〕 23 号,2018 年 6 月 29 日),全省生态保护红线总面积 4.05 万平方公里,占全省国土面积的 20.70%,其中,陆域生态保护红线面积 3.86 万平方公里,占全省陆域国土面积的 20.49%,海洋生态保护红线面积 1880 平方公里,占全省管辖海域面积的 26.02%。

经对比,本项目所在区域不属于划定的生态保护红线范围,符合《河北省生态保护 红线划定方案》要求。

环境质量状况

建设项目所在地区域环境质量现状及主要环境问题(环境空气、地面水、地下水、声环境、生态环境等):

1、环境空气质量

按《环境影响评价技术导则 大气环境》(HJ2.2-2018)相关规定,本评价选取保定市徐水区生态环境局环境空气质量例行监测点 2019 年全年(1月1日至12月31日)的监测数据对区域环境空气质量进行达标判断。 现状评价结果见表 5。

污染物	年评价指标	现状浓度 (μg/m³)	标准值 (µg/m³)	占标率(%)	达标情况
SO_2	年平均质量浓度	17	60	28	达标
NO ₂	年平均质量浓度	44	40	110	不达标
PM_{10}	年平均质量浓度	208	70	297	不达标
PM _{2.5}	年平均质量浓度	69	35	197	不达标
O_3	日最大 8h 滑动平均值的第 90 百分位数	200	160	125	不达标
CO	24 小时平均第 95 百分位数	2.68	4	67	达标

表5 区域空气质量现状评价一览表

由上表可知,环境空气常规六项评价指标中除 SO₂年均值、CO₂4 小时平均浓度第 95 百分位数达到《环境空气质量标准》(GB3095-2012)中二级标准要求外,PM_{2.5}年均值、PM₁₀年均值、NO₂年均值以及 O₃日最大 8 小时平均浓度第 90 百分位数均超过了《环境空气质量标准》(GB3095-2012)中二级标准要求。因此,本项目所在区域环境空气质量不达标,该区域为不达标区。

经分析,PM₁₀、PM_{2.5}、NO₂超标主要是受到冬季采暖燃煤排放、春季非采暖期风沙尘、施工扬尘以及汽车尾气等影响;臭氧可能是挥发性有机物(VOC)排放量增多导致,也可能是气象条件差(如高温、静风、少雨的气象条件),不利于污染物扩散和消除。

为改善环境空气质量,徐水区大力推进《大气污染防治行动计划》(国发[2013]37号)、《京津冀及周边地区落实大气污染防治行动计划实施细则》(环发[2013]104号)、《国务院关于印发打赢蓝天保卫战三年行动计划的通知》(国发[2018]22号)、《河北省打赢蓝天保卫战三年行动方案》、《保定市打赢蓝天保卫战三年行动方案》等工作的实施,本项目所在区域的空气质量会逐年好转。

2、地下水环境质量现状

本项目所在区域满足《地下水质量标准》(GB/T 14848—2017)Ⅲ类标准。

3、声环境质量现状

根据《保定市徐水区声环境功能区划分结果图(2019-2024 年)》(见附图 6)可知,项目所在区域未进行声环境功能区划分。项目所在区域声环境主要受工农业生产和交通噪声影响,参照《声环境功能区划分技术规范》(GB/T15190-2014),项目所在区域为 2 类声环境功能区,项目所在区域声环境质量满足《声环境质量标准》(GB3096-2008)2 类标准。

4、土壤环境质量现状

(1) 监测点布置

根据导则要求、评价区域土壤特征以及项目存在土壤污染风险的点位,在项目车间内的东(2#)、西部(1#)及厂区门口(3#)布设3个土壤环境质量现状监测点,共采集3个样品(1~3#)进行分析,监测布点图详见下图。



图 2 土壤监测布点示意图

(2) 监测项目、监测频次与监测方法

监测项目:《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018)中表 1 中 45 项基本项目及 pH、石油烃, 共 47 项。

监测时段和取样方法:本次项目厂区内土壤环境质量现状监测现场采样由河北拓维检测技术有限公司于 2020 年 10 月 25 日完成,实验室分析检测由河北拓维检测技术有限公司于 2020 年 10 月 25 日~2020 年 10 月 28 日进行。

监测方法: 土壤检测方法及检出限见表 6。

表 6 土壤样品检测项目及检测方法

<u> </u>	14 MI - 7 H	IA BLOOM		1 A . I . ₽F
	检测项目	检测方法	仪器名称及型号	检出限
1	pH 值	《土壤中 pH 值的测定》NY/T	PHS-3C pH 计	
	PTT ILL	1377-2007	(JC-07)	
	镉	《土壤质量 铅、镉的测定 石	原子吸收分光光度计	0.01. //
2	押	墨炉原子吸收分光光度法》 GB/T 17141-1997	AA2630 JC-35	0.01mg/kg
		《土壤和沉积物 六价铬的测	PinAAcle 900T 原子	
3	六价铬	定 碱溶液提取-火焰原子吸收	吸收分光光度计	0.5mg/kg
		分光光度法》HJ 1082-2019	(S356)	
4	铜		原子吸收分光光度计	lmg/kg
		《土壤和沉积物 铜、锌、铅、	TAS-990 JC-35 原子吸收分光光度计	
5	铅	镍、铬的测定 火焰原子吸收分	原丁吸収分几几度11	10mg/kg
	<i>L</i> 自	光光度法》HJ 491-2019	原子吸收分光光度计	2 /1
6	镍		TAS-990 JC-35	3mg/kg
_	_	《土壤和沉积物 汞、砷、硒、	 原子荧光光度计	
7	汞	铋、锑的测定 微波消解/原子荧光法》HJ 680-2013	AFS-230E JC-19	0.002mg/kg
		《土壤和沉积物 汞、砷、硒、		
8	 神	铋、锑的测定 微波消解/原子荧	原子荧光光度计	0.01mg/kg
	P-1	光法》HJ 680-2013	AFS-230E JC-19	0.011119/119
9	氯甲烷			
10	氯乙烯			
11	1,1-二氯乙烯			
12	二氯甲烷			
13	反-1,2-二氯乙			
14	烯 1,1-二氯乙烷			
	顺-1,2-二氯乙烷			
15	烯 //K-1,2-二,			
16	氯仿	 《土壤和沉积物 挥发性有机	 7890B-5977B 吹扫捕	
17	1,2-二氯乙烷	物的测定 吹扫捕集/气相色谱-		1.0µg/kg
18	1,1,1-三氯乙烷	质谱法》 HJ 605-2011	联用仪(S079)	\sim 1.9 μ g/kg
19	四氯化碳			
20	苯			
21	1,2-二氯丙烷			
22	三氯乙烯			
23	1,1,2-三氯乙烷			
24	甲苯			
25	四氯乙烯			
26	1,1,1,2-四氯乙 烷			
27				
	**************************************	I		

28	乙苯			
29) 			
	间二甲苯+ 对二甲苯			
30	苯乙烯			
31	邻二甲苯			
32	1,1,2,2-四氯乙 烷			
33	1,2,3-三氯丙烷			
34	1,4-二氯苯			
35	1,2-二氯苯			
36	萘			
37	苯胺	《土壤 苯胺的测定 气相色谱- 质谱法》 T/HCAA 003-2019	气相色谱-质谱联用仪 Agilent 6890/5973N JC-20	0.03mg/kg
38	2-氯酚			
39	硝基苯			
40	苯并[a]蒽			
41	崫			
42	苯并[b] 荧蒽	《土壤和沉积物 半挥发性有	6890N-5975B 气相色	0.06mg/kg
43	苯并[k] 荧蒽	机物的测定 气相色谱-质谱法》 HJ 834-2017	谱-质谱联用仪 (S434)	\sim 0.2mg/kg
44	苯并[a]芘			
45	茚并[1,2,3-cd] 芘			
46	二苯并 [a,h]蒽			
47	石油烃	《土壤和沉积物 石油烃 (C10-C40)的测定 气相色谱 法》HJ 1021-2019	8860 气相色谱仪 (S432)	6mg/kg

(3) 理化特性

表 7 土壤理化特性调查表

点位		厂区内生产车间西部 TR01-20
经纬度		115°33′11.96″E,39°3′43.55″N
	层次	采样深度 0-0.2 米
	颜色	黄棕
现 场	结构	团粒
现场记录	质地	轻壤土
	砂砾含量	少量石砾

	其他异物	少量根系
	pH 值	8.3
	阳离子交换量	6.2
实验完	氧化还原电位 mV	379
实验室测定	渗滤率 mm/min	0.351
,,	土壤容重(kg/m³)	1.48×10^3
	孔隙度	53.4

(4) 监测及评价结果

厂区内土壤环境现状监测及评价结果见表 8-1 和表 8-2,评价标准采用《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表 1 中第二类用地筛选值标准。

表 8-1 3#土壤环境质量现状监测与评价结果

项目样品	单位	3# (0~0.2m)	评价 标准	标准指数	评价结果
pH 值	无量纲	8.0	_	_	_
镉	mg/kg	0.10	65	0.0015	达标
六价铬	mg/kg	ND	5.7		达标
铜	mg/kg	25	18000	0.0014	达标
	mg/kg	28	800	0.035	达标
镍	mg/kg	29	900	0.032	达标
汞	mg/kg	0.037	38	0.0009	达标
砷	mg/kg	13.1	60	0.218	 达标
氯甲烷	μg/kg	ND	37000	_	未检出
氯乙烯	μg/kg	ND	430	_	未检出
1,1-二氯乙烯	μg/kg	ND	66000	_	未检出
二氯甲烷	μg/kg	ND	616000	_	未检出
反-1,2-二氯乙烯	μg/kg	ND	54000	_	未检出
1,1-二氯乙烷	μg/kg	ND	5000	_	未检出

顺-1,2-二氯乙烯	μg/kg	ND	596000	_	未检出
氯仿	μg/kg	ND	900	_	未检出
1,2-二氯乙烷	μg/kg	ND	5000	_	未检出
1,1,1-三氯乙烷	μg/kg	ND	840000	_	未检出
四氯化碳	μg/kg	ND	2800	_	未检出
苯	μg/kg	ND	4000	_	未检出
1,2-二氯丙烷	μg/kg	ND	5000	_	未检出
三氯乙烯	μg/kg	ND	2800	_	未检出
1,1,2-三氯乙烷	μg/kg	ND	2800	_	未检出
甲苯	μg/kg	ND	1200000	_	未检出
四氯乙烯	μg/kg	ND	53000	_	未检出
1,1,1,2-四氯乙烷	μg/kg	ND	10000	_	未检出
氯苯	μg/kg	ND	270000	_	未检出
乙苯	μg/kg	ND	28000	_	未检出
间二甲苯+对二甲苯	μg/kg	ND	570000	_	未检出
苯乙烯	μg/kg	ND	1290000	_	未检出
邻二甲苯	μg/kg	ND	640000	_	未检出
1,1,2,2-四氯乙烷	μg/kg	ND	6800	_	未检出
1,2,3-三氯丙烷	μg/kg	ND	500	_	未检出
1,4-二氯苯	μg/kg	ND	20000	_	未检出
1,2-二氯苯	μg/kg	ND	560000	_	未检出
萘	μg/kg	ND	70	_	未检出
苯胺	mg/kg	ND	260	_	未检出
2-氯酚	mg/kg	ND	2256	_	未检出
硝基苯	mg/kg	ND	76	_	未检出
苯并[a]蒽	mg/kg	ND	15	_	未检出

		mg/kg	ND	1293	_	未检出
 苯并[b]	 荧蒽	mg/kg	ND	15	_	未检出
	荧蒽	mg/kg	ND	151	_	未检出
苯并[8]芘	mg/kg	ND	1.5	_	未检出
茚并[1,2,3	B-cd]芘	mg/kg	ND	15	_	未检出
二苯并[a	,h]蒽	mg/kg	ND	1.5	_	未检出
石油烃(C	10-C ₄₀)	mg/kg	12	4500	0.0027	达标

表 8-2 1#、2#土壤环境质量现状监测与评价结果

项目样品	单位	1# (0~0.2m)	2# (0~0.2m)	评价 标准	标准指数	评价结果
pH 值	无量纲	8.3	8.4	_	_	_
石油烃 (C ₁₀ -C ₄₀)	mg/kg	13	16	4500	0.00289~ 0.00356	达标

从检测结果可以看出,项目占地土壤基本因子 45 项与特征因子监测结果低于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类建设用地筛选值,因此项目周边土壤环境状况良好。

主要环境保护目标(列出名单及保护级别):

项目选址周边无国家、省、市规定的重点文物保护单位、风景名胜区、革命历史 古迹等。根据工程性质及周边环境特征,确定本项目主要环境保护目标如下:

表 9 保护目标及保护级别

 环境	/n 12. m 1=	中心	坐标		与厂界		<i>t</i> → 1 \ <i>t</i> → → 1
要素	保护目标 	X (m)	Y (m)	方位	距离 (m)	功能	保护级别
	石桥村	-150	-245	SW	340	居住区	《环境空气质量标 准》(GB3095-2012)
大气环 境	谢坊营村	550	-390	SE	560	居住区	中的二级标准及修改单(生态环境部
切	城北村	-940	0	W	940	居住区	公告 2018 年第 29 号)要求
声环境	/			/			《声环境质量标 准》(GB3096-2008)2 类标准
地表水	瀑河	0	-1050	S	1050	IV类 水体	《地表水质量标 准》(GB3838-2002) 中Ⅳ类标准
地下水环境	区域地下 水		《地下水质量准》 项目所在地周围 1km 范围内 (GB/T14848-2017) Ⅲ类标准				
上	厂区内土 壤	《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 (GB36600-2018)标准					
土壤	周边农田	« :			地土壤污菜 18)中第二		示准(试行)》 金筛选值

注:以厂区西南角定位坐标原点(0,0)。

评价适用标准

1、项目位于农村居住、商业、工业混杂区,属于环境空气功能区二类区,执行《环境空气质量标准》(GB3095-2012)二级标准及生态环境部公告关于发布《环境空气质量标准》(GB3095-2012)修改单的公告(公告2018年第29号)。具体环境质量标准值详见表10。

表 10 环境质量标准及限值一览表

项目	讨	价因子	标准值	标准来源
		年平均	60μg/m³	
	SO_2	24 小时平均	150μg/m³	
		1 小时平均	500μg/m³	
	PM_{10}	年平均	$70 \mu g/m^3$	
	PIVI10	24 小时平均	150μg/m³	
		年平均	$40\mu g/m^3$	
	NO ₂	24 小时平均	$80\mu g/m^3$	《环境空气质量标准》
环境		1 小时平均	200μg/m³	(GB3095-2012)二级标准及生 态环境部公告关于发布《环境空
空气	TSP	年平均	$200 \mu g/m^3$	气质量标准》(GB 3095-2012)修改
<u> </u>		24 小时平均	$300 \mu g/m^3$	单的公告(公告 2018年 第 29
	PM _{2.5}	年平均	$35\mu g/m^3$	号)
	P1V12.5	24 小时平均	$75\mu g/m^3$	
	СО	24 小时平均	4mg/m³	
		1 小时平均	10mg/m³	
	O ₃	日最大8小时平均	160μg/m³	
		1 小时平均	200μg/m³	

2、项目所在区域开采地下水主要用于生活饮用水,地下水环境执行《地下水质量标准》(GB/T14848-2017)III类标准。

环境质量标准

	表 11 地下水环境	质量标准限值一览	表
项目	评价因子	标准值	来源
	рН	6.5~8.5	
	总硬度	≤450mg/L	
	溶解性总固体	≤1000 mg/L	
	硫酸盐	≤250 mg/L	
	氯化物	≤250 mg/L	
	挥发性酚类 (以苯酚计)	≤0.002 mg/L	
	耗氧量(COD _{Mn} 法,以O ₂ 计)	≤3.0mg/L	
サイチ	氨氮	≤0.50 mg/L	《地下水质量标准》 (GB/T14848-2017)III
地下水	亚硝酸盐	\leq 1.00 mg/L	(GB/114848-2017)III 类标准
	硝酸盐	≤20.0mg/L	JC M.IE
	氰化物	≤0.05 mg/L	
	氟化物	≤1.0mg/L	
	汞	≤0.001mg/L	
	砷	≤0.01 mg/L	
	铬(六价)	≤0.05 mg/L	
	镉	≤0.005 mg/L	

3、项目所在区域为农村居住、商业、工业混杂区,声环境执行《声环境质量标准》(GB3095-2008)2类标准。

表 12 声环境质量标准限值一览表

项目	评价因子	标准值	来源
声环境	Leq (A)	昼间≤60dB(A)	《声环境质量标准》
户小児		夜间≤50dB(A)	(GB3095-2008)2 类标准

4、土壤环境: 厂区内建设用地执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)建设用地土壤污染风险筛选值。

表 13 土壤质量标准限值一览表

项目	评价因子	标准值	来源
	砷	60mg/kg	
	镉	65mg/kg	 《土壤环境质量 建设用地土壤
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	六价铬	5.7mg/kg	污染风险管控标准(试行)》
土壤	铜	18000mg/kg	(GB36600-2018)表 1 第二类用
	铅	800mg/kg	地筛选值
	汞	38mg/kg	

镍	900mg/kg	
四氯化碳	2.8mg/kg	
氯仿	0.9mg/kg	
氯甲烷	37mg/kg	
1,1-二氯乙烷	9mg/kg	
1,2-二氯乙烷	5mg/kg	
1,1-二氯乙烯	66mg/kg	
顺-1,2-二氯乙烯	596mg/kg	
反-1,2-二氯乙烯	54mg/kg	
二氯甲烷	616mg/kg	
1,2-二氯丙烷	5mg/kg	
1,1,1,2-四氯乙烷	10mg/kg	
1,1,2,2-四氯乙烷	6.8mg/kg	
四氯乙烯	53mg/kg	
1,1,1-三氯乙烷	840mg/kg	
1,1,2-三氯乙烷	2.8mg/kg	
三氯乙烯	2.8mg/kg	
1,2,3-三氯丙烷	0.5mg/kg	
氯乙烯	0.43mg/kg	
苯	4mg/kg	
氯苯	270mg/kg	
1,2-二氯苯	560mg/kg	
1,4-二氯苯	20mg/kg	
乙苯	28mg/kg	
苯乙烯	1290mg/kg	
甲苯	1200mg/kg	
间二甲苯/对二甲苯	570mg/kg	
邻二甲苯	640mg/kg	
硝基苯	76mg/kg	
苯胺	260mg/kg	
2-氯酚	2256mg/kg	
苯并[a]蒽	15mg/kg	
苯并[a]芘	1.5mg/kg	
苯并[b]荧蒽	15mg/kg	
 苯并[k]荧蒽	151mg/kg	

薜	1293mg/kg	
二苯并[a,h]蒽	1.5mg/kg	
茚并[1,2,3-cd]芘	15mg/kg	
萘	70mg/kg	
石油烃	4500mg/kg	《土壤环境质量 建设用地土壤 污染风险管控标准(试行)》 (GB36600-2018)表2第二类用 地筛选值

量

控

制

指

标

污

染

物

排

放

- 1、废气:切割、焊接工序产生的颗粒物排放执行《大气污染物综合排放标准》 (GB16297-1996)表 2 二级标准及无组织排放监控浓度要求; 抛丸工序产生的颗 粒物排放执行《大气污染物综合排放标准》(GB16297-1996)表 2 二级标准要求。
- 2、噪声: 厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008) 2 类标准(夜间不生产)。
- 3、固废:一般工业固体废物参照执行《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及修改单;危险废物暂存执行《危险废物贮存污染控制标准》(GB18597-2001)及修改单要求。

表 14 排放标准一览表

:		WII THANKITE SEX										
	项目	评价	因子	标准值								
	废气	切割烟尘、 焊接烟尘、 抛丸颗粒 物 切割烟尘、	颗粒物	排放浓度≤120mg/m³, 排放速率≤3.5kg/h (有组织) 排气筒高度: 15m 排放浓度≤1.0mg/m³	《大气污染物综合排放标准》 (GB16297-1996)表2二级标准 要求 《大气污染物综合排放标准》							
		焊接烟尘等效连续	▶Λ 吉绍	(无组织) 昼间≤60dB(A)	(GB16297-1996)表2无组织排 放监控浓度限值 《工业企业厂界环境噪声排放标 准》(GB12348-2008)2类标准(夜							
	声	· · · · · · · · · · · · · · · · · · ·	· A 广 纵	夜间≤50dB(A)	恒》(GB12348-2008)2 突标准(校 间不生产)							

根据《国务院关于印发"十三五"节能减排综合工作方案的通知》(国发〔2016〕74号〕及河北省环境保护厅《关于启动做好"十三五"主要污染物总量控制规划编制工作的通知》(冀节减办〔2016〕2号)要求,并结合该项目的污染源及污染物排放特征,将 COD、NH₃-N、TN、TP、SO₂、NOx、VOCs、颗粒物作为污染物总量控制因子。

本项目污染物排放总量控制指标建议值为 COD 0t/a、 NH₃-N 0t/a、TN0t/a、TP 0t/a、SO₂ 0t/a、NOx 0t/a、VOCs 0t/a、颗粒物 0.246t/a。

建设项目工程分析

工艺流程简述(图示):

一、生产工艺

本项目生产工艺流程及排污节点见图 3。

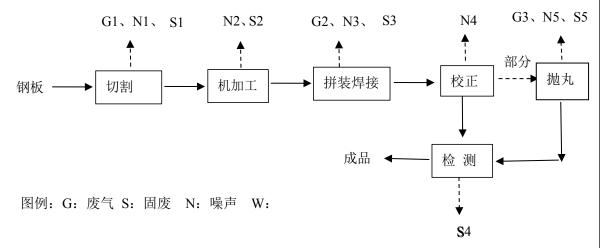


图3 生产工艺流程及排污节点图

工艺流程简述:

钢板经过切割下料、机加工、拼装焊接、校正等工序,切割下料根据钢板的厚度 选择数控火焰切割、激光切割、剪板机;机加工主要是车、镗、钻、冲压、折弯等过 程将钢板加工成型材;拼装焊接工序是根据产品形状将机加工后的型材拼装并使用二 氧化碳气体保护焊将型材焊接。焊接完成的工件需经过校正,检测合格后即为成品。 根据产品要求,部分工件(约 10%)在校正后需要进行抛丸处理,再经检验合格后, 得到成品。

—————————————————————————————————————								
类别	排污节点	序号	污染因子	产生方式	治理措施			
废气	切割、焊 接工序	G1、G2	颗粒物	间断	经"集气罩+滤芯除尘器+15m 高 排气筒 (P1)"处理			
及(抛丸工序	G3	颗粒物	连续	抛丸机自带除尘器处理后经 15m 高排气筒(P1)排放			
废水	办公生活	W1	COD、SS、氨氮、 总磷、总氮	间断	职工生活污水泼洒地面不 外排			
噪声	运行设备	N1-N5	等效连续 A 声级	连续	所有设备均安置在生产车间内, 采用低噪声设备、基础减振、厂 房隔声等措施。			
田広	生产过程	S1-S4	边角料、不合格品	间断	集中收集后外售			
固废	废气处理	S5	除尘灰	连续	集中收集后外售			

表 15 主要排污节点一览表

设备维护 保养	/	废润滑油、废液压 油、废包装桶、废 抹布	间断	暂存危废间,定期交由有资质单 位处置
 职工生活	/	职工生活垃圾	间断	生活垃圾收集后由环卫部门统 一清运处理。

主要污染工序

营运期:

- 1、废气:废气主要为切割、焊接工序产生的烟尘和抛丸工序产生的颗粒物。
- 2、废水: 废水主要为职工生活废水。
- 3、噪声:噪声主要为钻床、机床、镗床、卷板机、切割机、焊机、天车等设备 产生的噪声。
- 4、固体废物:固体废物主要为生产过程产生的边角料、不合格品、治理设施产生的除尘灰、废润滑油、废液压油、废包装桶、废抹布和职工生活垃圾。

项目主要污染物产生及预计排放情况

内容 类型		排放源 (编号)	污染物名称	产生浓度及产生量 (单位)	排放浓度及排 放量(单位)				
大气	打宝山	焊接工序烟尘	颗粒物 (有组织)	1.432t/a; 74.58mg/m ³	0.143t/a; 7.45mg/m³				
污污染		件'致工/]', 烟土	颗粒物 (无组织)	0.159t/a	0.159t/a ≤1.0mg/m³				
物	抛丸	工序颗粒物	颗粒物 (有组织)	1.03t/a; 214.58mg/m³	0.103t/a; 21.46mg/m ³				
水			COD	120mg/L, 0.0151t/a					
万污		生江 ニーレ	NH ₃ -N	20mg/L, 0.0025t/a	04/-				
染	生活污水		TN	25mg/L, 0.0032t/a	Ot/a				
物			TP	4mg/L, 0.0005t/a					
		生产过程	边角料	24t/a					
	一般		不合格品	5t/a					
	固废	除尘器	尘器 除尘灰 2.216t/a						
固体		职工生活	生活垃圾	1.95t/a					
废			废润滑油	0.05t/3a	Ot/a				
物	危险	江夕 <i>山</i> 东南	废液压油	0.1t/3a					
	废物	设备维护	废包装桶	4 个/3a					
			废抹布	0.01t/a					
				. 镗床、卷板机、切割机					
噪				间。本项目所有生产设名 第855 居也选出					
声				等降噪措施;风机选用位 至 60dB(A)以下,企业必					
				生》(GB12348-2008)					
其	厂区	、车间地面硬化	乙 ; 危废间基础必须	页采用防渗措施, 应设 记	十堵截泄露的裙				
他	脚,地	脚,地面做耐腐性、防渗措施,保证渗透系数小于 1×10 ⁻¹⁰ cm/s。							

主要生态影响:

本项目营运期,废水不外排,废气、噪声达标排放,固废处置率达到100%,不 会对当地生态环境造成污染和破坏。

环境影响分析

一
施工期环境影响分析:
本项目处于前期手续办理阶段,预计2021年3月投入生产。本项目占用现有厂
房进行设备安装,无土建工程施工,施工期只是安装设备的噪声,会随着安装结束
而影响结束。故本评价不再分析施工期。

营运期环境影响分析:

一、大气环境影响分析

1、废气污染源源强核算

本项目废气主要为切割、焊接工序产生的烟尘和抛丸工序产生的颗粒物。

(1) 切割烟尘

本项目切割使用数控火焰切割机和激光切割机,数控火焰切割机是将传统的火焰切割方式与数控自动化技术相结合,利用高温火焰将钢板表面的某一点加热至燃点,并充以高压氧,使之燃烧形成切口的切割方法。火焰切割的厚度一般都是 6mm 以上的碳钢。激光切割机是将从激光器发射出的激光,经光路系统,聚焦成高功率密度的激光束。激光束照射到工件表面,使工件达到熔点或沸点,同时与光束同轴的高压气体将熔化或气化金属吹走。随着光束与工件相对位置的移动,最终使材料形成切缝,从而达到切割的目的。切割过程会产生颗粒物,颗粒物产生量参考《第二次全国污染源普查工业源产排污系数手册》中"33 金属制品业行业系数手册"下料环节产污系数,氧/可燃气体切割,颗粒物的产生量为 1.50kg/t-原料。因此,本项目切割过程产生的颗粒物为 1.545t/a。每台切割设备设置废气收集装置,废气经收集后进入滤芯除尘器处理后经 15m 高排气筒排放。

(2) 焊接烟尘

本项目焊接方式为二氧化碳气体保护焊,使用焊丝为无铅实芯焊料,焊接时产生的焊烟不含铅,主要污染物为焊接烟尘。颗粒物产生参考《第二次全国污染源普查工业源产排污系数手册》中"33 金属制品业行业系数手册"焊接产污系数,使用实芯焊丝,颗粒物的产生量为9.19kg/t-原料。因此,本项目焊接过程产生的颗粒物为0.046t/a。本项目共12台二氧化碳气体保护焊机,每个焊机工位设置一个集气罩,废气经收集后进入滤芯除尘器处理后经15m高排气筒排放

切割、焊接工序产生的废气经集气罩收集后经共用的滤芯除尘器+15m 高排气筒 (P1)"处理后排放。两工序颗粒物产生量共 1.591t/a,风机风量为 8000m³/h。收集效率 90%,处理效率 90%,年工作 2400h,则颗粒物产生浓度 74.58mg/m³。颗粒物排放量为 0.143t/a,排放浓度为 7.45mg/m³,排放速率为 0.0596kg/h。颗粒物排放浓度、排放速率满足《大气污染物综合排放标准》(GB16297-1996)表 2 二级标准要求。

未收集的烟尘约为 10%,则无组织颗粒物排放量为 0.159t/a,排放速率为

0.066kg/h。满足《大气污染物综合排放标准》(GB16297-1996)表 2 无组织排放监控浓度限值。

(2) 抛丸颗粒物

本项目抛丸工序利用 1 台抛丸机对工件进行抛丸处理,抛丸工件占比约 10%,抛丸工件量约 103t/a,类比同类企业现有生产监测情况,抛丸颗粒物的产生量占抛丸工件量的 1%,经计算,颗粒物产生量为 1.03t/a,抛丸机置于密闭车间内,抛丸机自带布袋除尘器,风机风量为 2000m³/h,年运行 2400h,则颗粒物的产生浓度为 214.58mg/m³,布袋除尘器除尘效率为 90%,颗粒物的排放量为 0.103t/a,处理后,与切割、焊接工序共用 1 一根 15m 高排气筒(P1)排放。经处理后,排放浓度为 21.46mg/m³,排放速率为 0.043kg/h,可以满足《大气污染物综合排放标准》(GB16297-1996)表 2 中二级标准。

综上,切割、焊接、抛丸工序颗粒物的排放量合计为 0.246t/a,共用 1 根 15m 高排气筒排放,年运行 2400h,风量合计为 10000m³/h,则排放浓度为 10.25mg/m³,排放速率为 0.103kg/h,可以满足《大气污染物综合排放标准》(GB16297-1996)表 2中二级标准。

2、大气环境影响预测

(1) 大气环境影响评价工作等级的确定

依据《环境影响评价技术导则-大气环境》(HJ2.2-2018)中 5.3 节工作等级的确定方法,结合项目工程分析结果,以生产车间面源污染源,选择正常排放的主要污染物颗粒物作为评价因子,采用附录 A 推荐模型中的 AERSCREEN 模式计算项目污染源的最大环境影响,按评价工作分级判据进行分级。

①P_{max} 及 D10%的确定

依据《环境影响评价技术导则 大气环境》(HJ2.2-2018)中最大地面浓度占标率 Pi 定义如下:

$$P_i = \frac{C_i}{C_{0i}} \times 100\%$$

 P_i ——第 i 个污染物的最大地面空气质量浓度 占标率,%;

 C_i ——采用估算模型计算出的第 i 个污染物的最大 1h 地面空气质量浓度, $\mu g/m^3$;

 C_{0i} ——第 i 个污染物的环境空气质量浓度标准, $\mu g/m^3$ 。(一般采用小时浓度限

值,无小时浓度值时采用8h均值的2倍、日均值的3倍、年均值的6倍值)。

②评价等级判别表

评价等级按下表的分级判据进行划分

表 16 评价等级判别表

评价工作等级	评价工作分级判据		
一级评价	Pmax ≥ 10%		
二级评价	1%≦Pmax<10%		
三级评价	Pmax<1%		

③污染物评价标准

污染物评价标准和来源见下表。

表 17 污染物评价标准

评价因子	平均时段	标准值	标准来源		
DM	24 小时灭热	150ug/mg3	《环境空气质量标准》(GB3095-2012)		
PM_{10}	24 小时平均	150μg/mg ³	及其修改单		
TCD	24 小叶亚拉	200 011 0/20 03	《环境空气质量标准》(GB3095-2012)		
TSP	24 小时平均	$300.0 \mu g/mg^3$	及其修改单		

(2) 污染源参数

主要废气污染源排放参数见下表。

表 18 主要废气污染源参数一览表(点源)

污染源	排气筒底部中心坐标 (°)		排气筒 底部海	1 排气筒参数			污染物	排放速	单位	
名称 经度	经度	经度	拔高度 (m)	高度 (m)	内径 (m)	温度 (℃)	流速 (m/s)	名称	率	平世
排气筒 P1	115.553485	39.062325	23	15	0.5	25	11	PM ₁₀	0.103	kg/h

表 19 主要废气污染源参数一览表(面源)

	坐	沶	海坩		矩形面源	Ī			
污染源 名称	东经	北纬	· 海拔 · 高度 /m	长度 /m	宽度 /m	有效 高度 /m	污染 物	排放 速率	单 位
生产车间	115.553238	39.062608	24.00	80.12	26.33	10	TSP	0.066	kg/h

(3) 项目参数

估算模式所用参数见下表。

表 20 估算模型参数表

	参数	取值
城市农村/选项	城市/农村	农村

	人口数(城市人口数)	/
最高	环境温度	43.3°C
最低	环境温度	-22°C
土地	利用类型	农田
区域	湿度条件	中等湿度
是否考虑地形	考虑地形	否
走百 写 尼 地 /)	地形数据分辨率(m)	/
	考虑海岸线熏烟	否
是否考虑海岸线熏烟	海岸线距离/km	/
	海岸线方向/o	/

(4) 大气环境影响预测结果

表 21 Pmax 和 D10%预测和计算结果一览表

 污染源名称	评价	评价标准	C _{max}	P _{max}	D _{10%}
77朱你石你	因子	$(\mu g/m^3)$	$(\mu g/m^3)$	(%)	(m)
排气筒 P1	PM_{10}	450	9.4183	2.0930	未出现
生产车间	TSP	900	48.5060	5.3896	未出现

本项目矩形面源 Cmax 为 48.5060ug/m³, Pmax 值为 5.3896%, D_{10%}未出现,根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)分级判据,确定本项目大气环境影响评价工作等级为二级。二级评价项目不进行进一步预测与评价,只对污染物排放量进行核算。

根据《<环境空气质量标准>(征求意见稿)编制说明》(2010),"总悬浮颗粒物 TSP 包括了粒径大于 $10\mu m$ 的颗粒物和粒径小于等于 $10\mu m$ 的可吸入颗粒物 PM_{10} 。由于大于 $10\mu m$ 的颗粒物质量较大,易沉降到地面,在环境空气中的存留时间短,因而对人体健康的影响相对 PM_{10} 要小得多,而且通常 PM_{10} 在 TSP 中的比例在 80%左右,因而 TSP 的健康基准实际上主要是 PM_{10} 的基准。" PM_{10} 的常规监测数据可反映出 TSP 的环境空气质量状况,因此,不需再进行 TSP 的现状监测。

(5) 厂界监控点污染物达标情况分析

根据本项目生产车间矩形面源的预测,TSP的最大落地浓度出现在厂界下风向58m, Cmax 为48.5060ug/m³, Pmax 值为5.3896%, 因此, 预测厂界监控点满足《大气污染物综合排放标准》(GB16297-1996)表2无组织排放监控浓度限值要求。

3、污染物排放量核算结果

表 22 大气污染物有组织排放量核算表 排气 筒 污染物 (mg/m³) 核算排放速率 (kg/h) 核算年排放量 (t/a) 一般排放口 P1 PM₁₀ 10.25 0.103 0.246

表 23 无组织排放量核算结果

		主要污染防治措施	国家或地方污染物抖	左批光		
产污环节	污染物		标准名称	浓度限值	年排放 量(t/a)	
) 42% h			你任 石 你	(mg/m³)	里(l/a) 	
			《大气污染物综合排放			
切割和焊	TSP	 车间密闭	标准》(GB16297-1996)	1.0	0.159	
接工序	151	平川留内 	表 2 无组织排放监控浓	1.0	0.139	
			度限值			

表 24 项目大气污染物排放量核算结果

序号	污染物	排放量(t/a)
1	颗粒物	0.405

综上所述,项目废气污染物经治理后可达标排放。

4、大气环境防护距离确定

本项目大气环境防护距离采用估算模式计算无组织排放源大气环境防护距离,经 计算,本项目无组织排放废气无超标距离,不需设置大气环境防护距离。

5、大气环境影响评价自查表

表 25 本项目大气环境影响评价自查表

工作内容		自查项目						
评价等	评价等级	一级□		二级团		三级口		
级与范 围	评价范围	边长=50kmロ		边长=5~50km□		边长=5km☑		
评价	SO ₂ +NO _X 排 放量	≥2000t/a□ 500~2		/a□ 500~2000t/a□ <500t/a☑		500~2000t/a□		
因子	证从田乙	基本污染物 (PM ₁₀)					包括二次 PM _{2.5} □	
	评价因子 	其他污染物 ()					不包括二次 PM _{2.5} ☑	
评价 标准	评价标准	国家标准团 地方标准		能□ 附录 D□		其它标准□		
	环境功能区	一类区□		二类区図		一类和二类区口		
	评价基准年	2018 年			8年			
现状 评价	环境空气质 量现状调查 数据来源	长期例行监测	期例行监测数据□		主管部门发布的数 据☑		现状补充监测□	
	现状评价 达标区				不达标区☑			
污染源	调查内容	本项目正常排	区均	污染	拟替代	其它在建、	拟建项目污	

调查		本项目非正常排放源			源□		的污	的污染。染			
							源□				
		现有污染		ATIC		EDM	IC/AF		LDIE		
大境预评(目行与价气影测 本不预)环响与价项进测评	 预测模型	AERM OD	ADM S	AUS 2000		EDM DT	IS/AE	F	LPUF	网络模型	其他
	坝洲医空	D □	S □	2000				r			
	 预测范围	边长>50			边长	5~50l	km⊓		边长=	 .km⊓	
	预测因子	预测因子 ()						包括二次 PM _{2.5} 口 不包括二次			
	正常排放短 期浓度贡献 值	C本项目最大占标率≤100%□						C本项目最大占标率>100%□			
	正常排放年均浓度贡献	一类区	、项目៛ ‰	最大占	贵大占标率 C 本项目最大占标率≥10%			标率>10%に			
	· 超級及贝勒 值	二类区	C 本项目最大占标率 ≤30%□			C本	C本项目最大占标率>30%□				
	非正常排放 1h浓度贡献 值	非正常持续时长 () h			C 非正常最大占标 率≤100‰		C 非正常最大占标率> 100%□				
	保证率日平 均浓度和年 平均浓度叠 加值	C 叠加达标□					C 叠加不达标□				
	区域环境质 量的整体变 化情况	k≤-20%□				K>-20%□					
环境监测计划 -	污染源监测				有组织废气监测☑ 无组织废气监测☑ 无监测□						
	环境质量监 测	监测因子: () 监测点位数					数: ()		无监测	1	
	环境影响	可以接受☑ 不可以接受□									
评价	大气环境 防护距离	距(周边)厂界最远()m									
结论	污染源 年排放量	SO ₂ : 0t	NO _X : 0t/a				颗粒物	l: 0	.405t/a	VOCs: 0t/	'a

二、水环境影响分析

(1) 地表水环境影响分析

本项目劳动定员 13 人, 年生产 300 天, 生活污水产生量为 126m³/a。根据经验系数, 生活污水中主要污染物 COD、SS、氨氮、TP、TN 的浓度和产生量分别为 120mg/L、

0.015t/a, 150mg/L、0.019t/a, 20mg/L、0.0025t/a, 4mg/L、0.0005t/a, 25mg/L、0.0032t/a, 职工生活污水泼洒地面不外排, 不会对周围水环境产生污染影响。

(2) 地下水环境影响分析

根据《环境影响评价技术导则 地下水环境》(HJ610-2016)附录 A,本项目属于地下水影响评价IV类项目,导则要求IV类建设项目可不开展地下水环境影响评价,故本评价不再开展地下水环境影响评价工作。车间、厂区地面硬化;旱厕做防渗处理,防渗层渗透系数小于 1×10⁻⁷cm/s,危废间做防渗处理,防渗层渗透系数小于 1×10⁻¹⁰cm/s。

本项目经采取以上措施后不会对周围水环境产生明显不利影响。

三、声环境影响分析

1、评价等级确定

根据《环境影响评价技术导则 声环境》(HJ2.4-2009)和《保定市徐水区声环境功能区划分技术报告》(2019年)可知,项目所处的声环境功能区为2类区,本项目应进行二级评价。

2、噪声源强

本项目的噪声源主要为镗床、车床、剪板机、抛丸等生产设备和治理设施风机,源强70~95dB(A)之间。本项目所有生产设备均安装在密闭厂房内,同时采取基础减振、厂房隔声等降噪措施;治理设施安装在厂区中间位置,选用低噪声设备,并经基础减振和距离衰减后,各产噪设备噪声衰减量约15~25dB(A),本项目产噪情况见表26。

衣 26									
序号	噪声源	产噪声级 dB(A)	治理措施	降噪效果 dB(A)					
1	生产设备	70~95	设备基础减振、厂房隔声、距 离衰减	25					
2	风机	80	选用低噪声设备、基础减振	15					

表 26 产噪设备情况一览表

2、环境影响分析

(1) 预测内容的确定

采用《环境影响评价技术导则·声环境》(HJ2.4-2009)中推荐的模式进行计算。

(2) 预测模式

①无指向性点声源几何发散衰减

无指向性点声源几何发散衰减的基本公式:

$$L_p(r) = L_p(r_0) - 20lg(r/r_0)$$

②空气吸收的衰减

空气吸收引起的衰减按下式计算:

$$A_{atm} = a(r-r_0)/1000$$

式中: r-预测点距声源距离(m);

ro一参考点距声源的距离(m);

a一空气吸收系数。

(3) 预测结果及分析

按照噪声预测模式及选取参数,结合噪声源到各预测点距离,计算项目实施后对四周厂界的噪声贡献值,见表 27。

表 27 噪声预测结果一览表 单位: dB(A)

预测点名称	东厂界	南厂界	西厂界	北厂界
贡献值	53.97	54.89	56.47	58.41

由上表分析可知,本项目产噪设备对四周厂界的贡献值为 53.97~58.41dB(A),本项目厂界噪声贡献值满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中 2 类标准要求,不会对周围声环境产生明显影响。

四、固体废物影响分析

本项目产生的一般工业固体废物主要有:边角料、不合格品、治理设施产生的除 尘灰和生活垃圾;危险废物有废润滑油、废液压油、废包装桶、废抹布。

- 1、生产过程产生的边角料24t/a,不合格品为5t/a,治理设施产生的除尘灰2.216t/a,为一般工业固体废物,收集后定期外售;
- 2、生活垃圾产生量以0.5kg/人•d计算(员工13人,工作300d/a),生活垃圾产生量为1.95t/a,收集后由环卫部门定期清运。

3、危险废物

①危险废物产生情况

根据《建设项目危险废物环境影响评价指南》要求,本评价给出危险废物的名称、数量、类别、形态、危险特性和污染防治措施等内容。本项目设备维修、保养过程产生的废润滑油(HW08 900-217-08)、废液压油(HW08 900-218-08)、废包装桶(HW49

900-041-49)和废抹布(HW49 900-041-49),以上均为危险废物,危险废物收集后暂存于危废间,委托有资质单位定期处置。

危废名称	危废 代码	产生量	产生工序 及装置	形态	主要成分	有害 成分	产废物周期	危险 特性	污染防 治措施
废润滑油	HW08 900-217-08	0.05/3a	设备维 修、保养	液态	矿物 油	矿物油	每三年	毒性	收集后
废液压油 油	HW08 900-218-08	0.1/3a	设备维 修、保养	液态	矿物 油	矿物油	每三年	毒性	暂存于 危废 间,委
废包装桶	HW49 900-041-49	4 ↑/3a	设备维修	固态	树脂	矿物油	每三年	毒性	托有资 质单位 定期处
废抹布	HW49 900-041-49	0.01t/a	设备维 修、保养	固态	矿物 油	矿物油	每年	毒性	置

表 28 项目危险废物汇总情况一览表

②危险废物储存情况

本项目产生的危险废物均分类暂存于危废暂存间内。为保证暂存的危险废物不对环境产生污染,依据《危险废物贮存污染控制标准》(GB18597-2001 及 2013 年修改单)、《危险废物收集 贮存 运输技术规范》(HJ 2025-2012)及相关法律法规,对危险废物暂存场地提出如下安全措施:

- a 设置危险废物暂存间,危废间地面及裙角应做耐腐蚀硬化、防渗漏处理,且表面无裂隙;
- b 危险废物应储存于密闭容器中,并在容器外表设置环境保护图形标志和警示标志:
- c 危险废物应选择防腐、防漏、防磕碰、密封严密的容器进行贮存和运输,远离火种、热源,库房应有专门人员看管。危废暂存库看管人员和危险废物运输人员在工作中应佩带防护用具,并配备医疗急救用品;
- d 建立档案制度,对暂存的废物种类、数量、特性、包装容器类别、存放库位、 存入日期、运出日期等详细记录在案并长期保存。建立定期巡查、维护制度;
- e 危险废物贮存场所室内地面硬化和防渗漏处理。一旦出现盛装液态固体废物的容器发生破裂或渗漏情况,马上修复或更换破损容器,地面残留液体用布擦拭干净。 出现泄漏事故及时向有关部门通报。

③危险废物处置情况

本项目产生的危险废物经分类收集后暂存于危险暂存间,委托有资质单位定期处

置。

经采取上述措施后,本项目在运营期产生的固体废物均可得到妥善处置,不会对项目周围环境产生明显影响。

表 29 项目危险废物贮存场所(设施)基本信息表

			1						
序	储存场所	危废	危废	危废代码	位置	占地	贮存	贮存	 贮存周期
- 号	(设施) 名称	名称	类别			面积	方式	能力	火二(丁/印持)
1		废润	HW08 废	900-217-08			桶装	满足	1年
1		滑油	矿物油	900-217-08			佃农	要求	1 ++
$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$		废液	与含矿物	000 219 09	厂区西	18 m²	桶装	满足	1年
2	危废间	压油	油废物	900-218-08				要求	
	厄灰间	废包	HW49	000 041 40	部		家田	满足	1年
$\begin{vmatrix} 3 \end{vmatrix}$		装桶	其他废物	900-041-49			密闭	要求	1 年
		废抹	HW49	000 041 40			家臼	满足	1 左
4		布	其他废物	900-041-49	00-041-49		密闭	要求	1年

经采取上述措施后,本项目在运营期产生的固体废物和生活垃圾均可得到妥善处置,不会对项目周围环境产生明显影响。

五、土壤环境影响分析

1、项目类别识别

根据《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018)附录 A 表 A.1 土壤环境影响评价项目类别,本项目属于III类项目。

2、建设项目占地规模

项目总占地面积为 3342.09 m² (约 0.33hm²) <5hm², 占地规模为小型。

3、建设项目所在地敏感程度

项目周边有耕地,对照敏感程度分类表可知,本项目为"敏感",对照土壤分级表可知,本项目土壤环境为三级。

4、污染影响型评价工作等级

污染影响型评价工作等级划分表如下表。

表 30 污染影响型评价工作等级划分表

占地规模敏		I类		II类			III 类		
感程度	大	中	小	大	中	小	大	中	小
敏感	一级	一级	一级	二级	二级	二级	三级	三级	三级
较敏感	一级	一级	二级	二级	二级	三级	三级	三级	
不敏感	一级	二级	二级	二级	三级	三级	三级		

注: "-"表示可不开展土壤环境影响评价工作

5、评价工作级别确定

综合以上分析,根据《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)土壤环境影响评价工作等级划分原则,该建设项目土壤环境评价工作等级为三级。

6、影响源及影响因子

建设项目土壤环境影响源及影响因子参见表 31。

表31 土壤环境影响类型与影响途径表

T 国时机		污染影	响型	
不同时段	大气沉降	地面漫流	垂直入渗	其他
建设期				
运营期	√		√	
服务期满后				

表32 土壤环境影响源及影响因子识别表

污染源	工艺节点	污染 途径	全部 污染	特征因子	备注
生产 车间	切割、焊接、抛丸工序	大气 沉降	颗粒物	无	产生烟尘无毒无害,不 会对周边土壤产生影响
危废间	设备维修、保养过程产 生的废润滑油、废液压 油	垂直 入渗 型	石油烃	石油烃	废润滑油、废液压油产 生量较少,储存于密闭 桶内,暂存于危废间内, 危废间做好防渗工作

7、保护措施与对策

为进一步防止污染物下渗污染土壤环境,本次评价要求企业应加强日常管理,强 化工人意识,严格操作流程,使生产设备和设施达到无泄露标准要求。同时,要加强 对现有工程设施的巡检工作,定期检查,在不影响生产或必要时进行现有工程防渗工 程的修缮和强化工作。

8、结论

本项目所在区域土壤污染因子基本项目(45 项)和本项目特征因子环境质量均满足《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)标准要求,土壤环境质量良好。本项目经采取有效的土壤污染防控措施,不会对项目区土壤环境造成污染影响。

表 33 土壤环境影响评价自查表

	工作内容	完成情况	备注
影	影响类型	污染影响型☑;生态影响型□;两种兼有□	_

响	土地利用类型	建设用地区;	农用地□; ラ	 長利用地□		_		
识	占地规模	$(0.33) \text{ hm}^2$		_				
别	敏感目标信息	敏感目标(耕 (紧临)	地)、方位	(周边, 东、	北侧)、距离	_		
	影响途径	大气沉降回; 其他()	地面漫流□;	垂直入渗□;	地下水位口;	_		
	全部污染物		颗粒物					
	特征因子		颗粒物					
	所属土壤环境影响 评价项目类别	I 类□;II 类□;III 类☑;IV 类□				_		
	敏感程度	敏感☑; 较敏	感□; 不敏原	惑□		_		
	评价工作等级	一级口; 二级口						
现	资料收集	a) ☑ ; b)□; c)	a)∅; b)□; c) ∅; d)□					
状	理化特性							
调 查	现状监测点位		占地范 围内	占地范围外	深度	点位 布置图		
内		表层样点数	3	0~0.2m	TH LEI			
容	现状监测因子	GB36600-2018	_					
现	评价因子	挥发性有机物	挥发性有机物					
状	评价标准	GB15618□; G	B36600 ∅ ;	表 D.1□;表 l	0.2□			
评 价	现状评价结论	达标						
	预测因子	挥发性有机物						
影	预测方法	附录 E☑; 附录	录 F□; 其他	()				
响 预	 预测分析内容	影响范围(影响程度()					
测	预测结论	达标结论: a)。 不达标结论:		*		_		
防	防控措施	土壤环境质量 其他()	现状保障□;	源头控制☑;	过程防控☑;	_		
治	미디 대수 나는 사내	监测点数	监测频次	_				
措施	跟踪监测	_		_		_		
) / DE	信息公开指标	_		_		_		
评价	·结论	项目对土壤污						

注 1: "□"为勾选项,可√;"()"为内容填写项;"备注"为其他补充内容。

注 2: 需要分别开展土壤环境影响评级工作的,分别填写自查表。

六、环境风险分析

根据本项目所用原辅材料及《建设项目环境风险评价技术导则》(HJ169-2018) 中的相关规定进行环境风险判定和评价工作等级划分。

1、环境风险评价工作等级的划分

项目风险物质为丙烷、废润滑油和废液压油,丙烷厂区最多储存 5 瓶(23kg/瓶),丙烷最大存储量为 0.115t:废润滑油和废液压油的最大储存量分别为 0.05t 和 0.1t。

(1) 危险物质及工艺系统危险性特征

本项目 Q (危险物质数量与临界量比值) 值确定见表 34。

表 34 项目 Q (危险物质数量与临界量比值) 值确定表

序号	危险物质名称	CAS 号	最大存在总量 q/t	临界量 Q/t	该种危险物质 Q 值
1	丙烷	74-98-6	0.115	10	0.0115
2	废润滑油	/	0.05	2500	0.00002
3	废液压油	0.00004			
		0.01156			

当 Q<1 时,该项目环境风险潜势为 I。

当 Q≥1 时,将 Q 值划分为(1)1≤Q<10; (2)10≤Q<100; (3)Q≥100。

本项目 Q 值为 0.01156, 该项目环境风险潜势为 I。

(2) 环境风险评价等级判定

表 35 评价工作等级划分

环境风险潜势	IV 、 IV+	III	II	I
评价工作等级	_	=	三	简单分析 a

^a是相对于详细评价工作内容而言,在描述危险物质、环境影响途径、环境危害后果、风险防范措施等方面给出定性的说明。

根据上表,本项目环境风险潜势为I,确定环境风险评价工作等级为简单分析。

2、环境敏感目标概况

项目周围的环境敏感目标如下表所示:

表 36 项目周围的环境敏感目标

环境要素	保护目标	相对方位	距离(m)	人口数 (人)
	石桥村	SW	340	1230
环境空气	谢坊营村	SE	560	1643
	城北村	W	940	1465

3、环境风险识别

对项目风险物质进行分析,项目环境风险识别情况见下表。

表 37 项目环境风险识别情况表

	危险单元	风险源	主要危险 物质	环境风险类 型	环境影响途径	可能受影响的 环境敏感目标
1	生产车间	丙烷钢 瓶	丙烷	泄露、火灾 引发的次生 环境风险	泄漏后在静电、明火、 雷击、电气火花的诱发 下极可能发生火灾。	石桥村

2	附属设施	危废间	废润滑 油、废液 压油	泄露	泄露后污染土壤、地下 水	厂区内
---	------	-----	-------------------	----	-----------------	-----

4、环境风险管理

项目环境应急措施要求

丙烷泄露:

迅速撤离泄露污染区人员至上风处,并进行隔离,严格限制出入。切断火源。尽可能切断泄漏源。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大量废水。如有可能,将泄露气用排风机送至空旷地方或装适当喷头烧掉。漏气容器要妥善处理,修复、检验后再用。

危废泄露:少量泄露时,使用沙土对泄露的废润滑油或废液压油进行吸附收集, 若泄露量较多时,迅速在围堰内对泄露物料进行收集,转移至新容器内。

5、环境风险评价结论

项目涉及的风险物质是丙烷,风险物质贮存量较小,环境风险潜势为 I ,环境风险事评价等级为简单分析,评价提出了一系列风险防范措施,只要企业在完善物料贮存设施加强安全检查,加强职工安全教育和培训之后,在做好各项风险防范措施的情况下,项目环境风险事故对周围环境的影响较小。项目环境风险属可接受水平。

表38 建设项目环境风险简单分析内容表

在38 建皮坝日外境风险间单分机内谷农				
建设项目名称	年加工1000吨工程机械金属件项目			
建设地点	保定市徐水区遂城镇石桥村北侧			
地理坐标	39°03'47.08",东经115°33'34.51"			
主要危险物质	主要风险物质为丙烷,分布:丙烷存放区;			
及分布	废润滑油、废液压油,分布:危废间内			
环境影响途径及危	丙烷、废润滑油、废液压油泄漏、火灾,引发环境空气、土壤、地下水污			
害后果	染事故。			
风险防范措施要求	(1)加强对物料储存、使用的安全管理和检查,避免物料出现泄漏。 (2)由于丙烷最大存储量 5 罐,储存在丙烷钢瓶内,针对本项目生产特点,本环评要求如下: ①原料需做到随用随购,不储存多余原料,对必须储存的原料设专人看管。限制危险物品的储备量,厂区最大储存量 5 罐(23kg/罐)。原料随用随进,不在厂内长期积压储存。 ②丙烷储存位置地面全部按照水凝混凝土防渗处理。 ③进入生产区的柴油类机动车辆,必须配备火星熄灭装置。 ⑤配备消防栓等消防器材。 ⑥建立健全丙烷安全操作规程并坚持执行。			

	_
(3) 危废存放	
①使用专用的容器储存物料。	
②存放于专用的危废间中,并设置围堰,专人管理。	
③针对储存中可能发生的异常现象和存在的安全隐患,制定合理可	
行的操作规范及风险管理措施,提高风险防范意识。	
(4)要加强对各岗位员工进行风险意识、风险知识、安全技能、规章制	
度、应变能力等素质等各方面的培训和教育;	
(5)企业应当按照安全监督管理部门和消防部门要求,严格执行相关风	
险控制措施;	
(6) 做好总图布置和建筑物安全防范措施;	
(7) 准备各项应急救援物资。	
(7) 花田自次应心状状物质。	_

建设项目拟采取的防治措施及预期治理效果

内容	排放源(编号)		污染物名称	防治措施	预期治理效果		
			颗粒物(有组织)	采用"集气罩+ 滤芯除尘器 +15m 高排气 筒(P1)"处理	《大气污染物综合排放 标准》(GB16297-1996) 表 2 二级标准要求		
大气 污染 物			颗粒物(无组织)	密闭车间	《大气污染物综合排放 标准》(GB16297-1996) 表 2 无组织排放监控浓 度要求		
			颗粒物(有组织)	采用"设备自 带布袋除尘器 +15m 高排气 筒 (P1) "处理	《大气污染物综合排放 标准》(GB16297-1996) 表 2 二级标准要求		
水污 染物	生活污水		COD、NH ₃ -N、TN、 TP、SS	生活污水泼洒 地面不外排	不外排		
	一 般	生产过程除尘器	边角料、不合格品 除尘灰	收集后外售			
田仕	固 废	职工生活	生活垃圾	收集后由环卫 部门定期清运	合理处置		
固体 废物	危		废润滑油	收集后暂存危			
	险	设备保养	废液压油	废间,定期交	 合理处置		
	废	人 田 水 月	废包装桶 由有9	由有资质单位	172E		
	物		废抹布	<u> </u>			
噪声	本项目的噪声源主要为钻床、机床、镗床、卷板机、切割机等生产设备和 治理设施风机,源强 70~95dB(A)之间。本项目所有生产设备均安装在密 闭厂房内,同时采取基础减振、厂房隔声等降噪措施;风机选用低噪声设备, 并采取基础减振和距离衰减后,噪声可降至 60dB(A)以下,企业夜间不生产, 能够满足《工业企业厂界环境噪声排放标准》(GB12348-2008) 2 类标准要求。						
其他	脚,		性、防渗措施, 保证	2 11 11 11 11 11 11 11 11	拖,应设计堵截泄露的裙 10 ⁻¹⁰ cm/s。		

生态保护措施及预期效果

本项目营运期,废水合理处置,废气、噪声达标排放,固废处置率达到 100%,不会对当地生态环境造成污染和破坏。

结论与建议

一、结论

1、项目概况

项目名称: 年加工 1000 吨工程机械金属件项目;

建设单位:保定跃卓金属制品有限公司;

建设性质:新建:

建设规模及内容:项目占地面积 3342.09m²,租赁原有厂房及办公楼建筑面积 2108m²;安装二氧化碳气体保护焊机、立式金刚镗床、三辊卷板机、剪板机、环保设备 等相关设备。项目建成后,年加工 1000 吨工程机械金属件。

项目投资:项目总投资 320 万元,其中环保投资 9.5 万元,占总投资的 2.97%。

2、产业政策结论

本项目属于机械零部件加工项目,经对照《产业结构调整指导目录(2019年本)》,《河北省新增限制和淘汰类产业目录(2015年版)》本项目不属于该目录中淘汰、限制类,为允许类项目;保定市徐水区发展和改革局为本项目出具了备案信息,备案编号:徐水发改备字[2020]127号。因此,该项目的建设符合国家及地方的产业政策。

3、选址可行性

本项目所在区域内无自然保护区、风景名胜区、集中式生活饮用水源地等环境敏感区和集中居民区。且项目厂区平面布置紧凑合理、分区明确、场地利用系数较高,同时满足生产工艺流程合理通畅的要求,方便生产。从环保角度上讲,项目选址可行。

4、环境质量现状

(1) 大气环境:根据保定市徐水区环境空气质量例行监测点 2019 年全年(1月1日至12月31日)的监测数据作为基本污染物环境质量现状数据,徐水区环境空气常规

六项年评价指标中除 SO₂年均值、CO24 小时平均浓度第 95 百分位数达到《环境空气质量标准》(GB3095-2012)中二级标准要求外, PM_{2.5}年均值、PM₁₀年均值、NO₂年均值以及 O₃日最大 8 小时平均浓度第 90 百分位数均超过了《环境空气质量标准》(GB3095-2012)中二级标准要求。因此,本项目所在区域环境空气质量不达标,该区域为不达标区。

- (2)地下水环境:本项目所在区域满足《地下水质量标准》(GB/T 14848—2017) III类标准。
 - (3) 声环境: 区域声环境执行《声环境质量标准》(GB3096-2008)2 类标准。
- (4) 土壤环境: 厂区内建设用地执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)建设用地土壤污染风险筛选值。

5、工程分析结论

(1) 废气

本项目使用数控火焰切割机 2 台、激光切割机 1 台、CO₂ 焊机 12 台,产生的切割烟尘、焊接烟尘采用"集气罩+滤芯除尘器+15m 高排气筒 (P1)"处理。抛丸机 1 台,抛丸产生的颗粒物经设备自带除尘器过滤后与切割、焊接工序共用排气筒排放。经预测,颗粒物排放满足《大气污染物综合排放标准》(GB16297-1996)表 2 二级标准及无组织排放监控浓度限值要求。

根据预测,项目废气均能达标排放,且排放量较小,不会对周围环境产生明显不利影响,周围空气环境能够维持现有水平。

(2) 废水

本项目生活污水产生量为 126m³/a, 生活污水泼洒地面不外排, 不会对周围水环境产生明显影响。

(3) 噪声

本项目的噪声源主要为钻床、机床、镗床、卷板机、切割机、焊机等生产设备和治理设施风机,源强70~95dB(A)之间。本项目所有生产设备均安装在密闭厂房内,同时采取基础减振、厂房隔声等降噪措施;风机选用低噪声设备,并采取基础减振和距离衰减后,噪声可降至60dB(A)以下,企业夜间不生产,能够满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准要求。

(4) 固废

本项目固体废物包括生产过程中边角料、不合格品、治理设施产生的除尘灰、废润滑油、废液压油、废包装桶、废抹布和职工生活垃圾。其中边角料、除尘灰、不合格品属于一般工业固体废物,全部收集后外售;生活垃圾分别收集后由环卫部门定期清运;废润滑油、废液压油、废包装桶、废抹布收集后暂存危废间内,定期交由有资质单位处置。

6、环境影响分析结论

本项目运营期产生的大气污染物经治理后均可达标排放,不会对当地大气环境产生影响,区域环境空气质量可维持现有水平。

项目废水全部为职工生活污水,生活污水泼洒抑尘,不外排,不会对周围水环境产生明显影响。

通过厂内合理布局,选用低噪声设备,采取基础减振,再经厂房隔声,距离衰减等措施后,对周围声环境影响较弱,声环境质量可维持现有水平。

本项目产生的固体废物全部妥善处置,不会对周围景观环境和生态环境产生影响。

7、污染防治可行性分析结论

项目采取的各项污染治理工艺成熟、可靠,可保证污染物达标排放,满足总量控制要求。污染防治措施可行。

8、污染物排放总量控制分析结论

项目污染物总量控制建议指标为 SO₂: 0t/a、NO_x: 0t/a、COD: 0t/a、氨氮: 0t/a、 总氮: 0t/a、总磷: 0t/a、颗粒物: 0.246t/a, VOCs: 0t/a。

评价认为,该项目的建设内容符合国家产业政策,选址可行,平面布置合理,在落实本报告表规定的各项污染防治措施后,能够做到污染物达标排放。从环境保护的角度讲,本项目的建设是可行的。

二、运营期环境管理与监测计划

- 1、环境管理机构组建
- (1) 组织机构的建立和职责

本项目由主要负责人统一负责环境管理工作,配备 1 名兼职人员,负责日常环境管理工作。具体为:营运期的管理工作重点是各项环保措施的落实,环保设施运行的管理和维护,日常的监测及污染事故的防范和应急处理。根据全厂制定的环境保护目标考核计划,结合日常运营各个环节对环境的不同要求进行考核,并把资源、能源消耗、资源

回收、污染物排放量等环保指标纳入考核的范围内。提高员工的环保意识,加强环保知识教育和技术培训。

(2) 环境管理制度的建立

环境管理制度的内容主要包括:

- ①环境管理机构与管理职责:
- ②防治污染的管理规定;
- ③建设项目的管理规定;
- ④环境监测的管理规定;
- ⑤环保设施的管理规定;
- ⑥污染事故的管理规定。
- (3) 环境管理台账的建立

环境管理台账主要包括:

- ①环保管理网络;
- ②主要污染源分布简图;
- ③主要污染源汇总表;
- ④环保设施汇总表;
- ⑤环保设施运行记录;
- ⑥环保检查台账;
- ⑦环保设施运行台账;
- ⑧监测台账:
- ⑨危废台账
- 2、监测计划

为了保证厂区和周围环境的持续发展,严格执行各项环境保护法规是不可少的,环境监测不仅是为了满足法规的需要,同时环境监测也是对本项目经营状况和经济收益进行监控的重要组成部分。该项目环境监测工作计划委托当地具有资质的有关单位负责。根据《排污单位自行监测技术指南 总则》(HJ819-2017)及本项目具体实际情况,制定全厂监测计划,监测计划见表 39。

表 39 全厂监测计划表

污染源类别	监测位置	监测因子	监测周期		
颗粒物	切割、焊接、抛丸工 序排气筒	颗粒物	1 次/a		

	厂界	颗粒物	1 次/a		
噪声	厂界外 1m	等效连续 A 声级	1 次/季度		

三、建设项目污染物排放情况

项目竣工环境保护验收内容见表 40、污染物排放清单及管理要求见表 41。

表 40 项目竣工环境保护验收内容一览表

表 40 项目竣工环境保护验收内容一览表						
项目	治理劝	才象	环保措施	治理效果		
	切割烟尘		采用"集气罩 (3 个)+滤芯除尘器 +15m 高排气筒 (P1)"处理			
応 /=	焊接烟尘	有组织	采用"集气罩(12 个)+滤芯除尘 器+15m 高排气筒(P1)"处理	《大气污染物综合排放标准》		
废气	切割烟 尘、焊接 烟尘	无组织	密闭车间	(GB16297-1996)表2二级标准及无组织排放监控浓度要求		
	抛丸废气	有组织	抛丸机自带除尘器+15m 高排气筒 (P1 共用)			
废水	生活污	 手水	生活污水泼洒地面不外排	不外排		
噪声	设备运行时产生的噪声		生产设备均置于密闭车间内,选取低噪声设备,同时采取基础减振、厂房隔声等隔声降噪措施,治理设施风机选用低噪声设备,并采取基础减振措施,夜间不生产	厂界噪声排放达到《工业企业厂界环境噪声排放标准》 (GB12348-2008)2类标准昼间要求		
	边角料、除尘灰、 不合格品		全部收集后外售	合理处置,满足《一般工业固体 废物贮存、处置场污染控制标 准》(GB18599-2001)及修改 单要求;		
固废	职工生活垃圾		 收集后由环卫部门定期清运 	合理处置		
	废润滑油、废液压 油、废包装桶、废 抹布		收集后暂存危废间内,定期交由有 资质单位处置	合理处置,危险废物暂存执行《危险废物贮存污染控制标准》 (GB18597-2001)及修改单要 求。		
其他	' - ' ' '	_,,,,,	;危废间基础必须采用防渗措施,应证渗透系数小于 1×10 ⁻¹⁰ cm/s。	Z设计堵截泄露的裙脚,地面做耐		
	I	表 41	项目污染物排放清单及管理要	「求一览表		
序 号	类型		内容			
1	工程组成	主要建设内容包括:生产车间及库房1座、办公楼及危废间等;安装钻床、 工程组成 机床、镗床、切割机、焊机、天车等设备;生产规模为年加工1000吨工程 机械金属件。				
2	原辅材料	`	B钢板、NM360钢板、氧气、丙烷与 关标准及企业标准要求的原料,满足			

3	环境	6保	————— 护措施及						_	
			环保		要烟尘采用'	·集气罩+泡	虑芯除	尘器处理+15m 副	高排气筒 (P1) ";	
3.1	废 ² 治3	-	措施	抛丸废气经设金	备自带除尘	器处理后:	经 15m	高排气筒(P1 =	共用) 排放	
3.1		上流 坏保		6.3 万元						
) E	投资	0.3 /1/L						
	废	水	环保	 生活污水泼洒	地面不外排					
3.2	治		措施							
	措施 措施		环保	/						
	19 / M 投资 环保				间内. 选取	任 陨 吉 设 :	タ . 同	时采取基础减振	 、厂房隔声等降	
	 噪〕	击	措施	噪措施,夜间		[K/未/ · 久	田, 1~1	17个人全面吸机		
3.3	防治		环保	KITAET KITA	1 11./ 0					
	"		投资			1.3	2 万元			
			环保	边角料、除尘	灰、不合格	品属于一	般工业	固体废物,全部	以集后外售;生	
	固力	屯	小保 措施	活垃圾分别收约	集后由环卫	部门定期	清运。	废润滑油、废液	压油、废包装桶、	
3.4	型			废抹布收集后等	暂存危废间	内,定期	交由有	资质单位处置		
			环保			1.	0 万元			
			投资 环保							
3.5			小保 措施	厂区、车间地面硬化;						
3.3	其他									
				1.0 万元						
4	污菜	と物力	排放种类	、浓度及执行标	淮					
		沪	5染物	颗粒物有组织			颗粒物无组织			
			测排放	0 246t/a,	10.25mg/n	n ³	$0.159t/a, \leq 1.0 \text{mg/m}^3$			
			情况							
		执行		《大气污染物综合排放标准》			《大气污染物综合排放标准》			
			标准	(GB16297-1996)表 2 标准二级标准 要求			(GB16297-1996)表 2 标准无组织排放 监控浓度限值要求			
	废						血且机反於直女不			
4.1	气	林	示准值		排放浓度≤120mg/m³,排放速率			无组织≤1.0mg/m³		
		η.	11年1年	≤3.5kg/h(有组织) 排气筒高度: 15m			July 1.0mg/m			
				111 (H1)H1/2	Z. 13m					
		±.	 放口							
		'	信息							
			ID 4EV		□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□					
)-i	5染物	COD	SS	NH ₃ ·	 -N	TN	TP	
			测排放							
		l .	情况	0t/a	0t/a	Ot/a	a	Ot/a	0t/a	
4.0	废		执行			l				
4.2	水		标准			-				
		枋	示准值			_				
		扫	放口							
			信息							
	噪	汚	染物种			等效连	续A戸	旨级		
4.3	声		类							
		预	测排放		昼	闰≤60dB(Д	A),夜	间不生产		

		情况									
		执行 标准	«	工业企业	业厂界环	境噪声排	放标准》((GB12348	-2008)2 类	标准	
		标准值	昼间≤60dB(A),夜间≤50dB(A)								
		排放口信息		沙(((
		污染物 种类	边角料、 装桶、废		品、除尘	:灰、职工	生活垃圾	、废润滑	油、废液	压油、废包	
		预测排放 情况	活垃圾收	边角料、不合格品属于一般工业固体废物,全部收集后外售;除尘灰、生 括垃圾收集后由环卫部门定期清运;废润滑油、废液压油、废包装桶、废 末布属于危险废物,收集后暂存危废间内,定期交由有资质单位处置。							
4.4	固体废	执行 标准	(GB18599	一般工业固体废物执行《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及修改单规定。危险废物贮存执行《危险废物贮存污染物控制标准》(GB18597-2001)及 2013 年修改单中的相关规定。							
	物	排放口信息	一般工业								
5	污導	└──── ヒ物排放总量				70 13 3	7012//	10 DC 1 - Ed	7011 3		
5.1	ì	污染物	COD	TN	TP	氨氮	SO ₂	NOx	VOCs	颗粒物	
5.4		量控制指 建议值	0	0	0	0	0	0	0	0.246	
6	企业	比环境信息公	〉 开								
6.1	公开内容:①基础信息,包括单位名称、法定代表人、生产地址、联系方式,以及生产经营和管理服务的主要内容、产品及规模;②排污信息,包括主要污染物及特征污染物的名称、排放方式、排放口数量和分布情况、排放浓度和总量、超标情况,以及执行的污染物排放标准、核定的排放总量;③防治污染设施的建设和运行情况;④建设项目环境影响评价及其他环境保护行政许可情况;⑤其他应当公开的环境信息。										
6.2	监督	F方式: ①2	④本单位[的资料索	取点、作	言息公开机	兰、信息高			、公开服务、 触摸屏等场	

四、建议

- 1、在营运期,不得擅自变动污染防治设施,保证污染防治设施正常运行。
- 2、加强对机械设备日常管理及维修保养工作,确保各项污染物长期稳定达标排放。
- 3、认真落实环保措施,确保生产过程中各项污染物长期稳定达标运行。

预	审意见:				
			公 章		
	经办人	任	月		
	经分入	+	Л	Н	
下	一级环境保护主管部门审查意见:				
			小 音		
			公 章		
	经办人	年	公 章 月	日	

审批意见:	
-1- 1mm/m \(\sigma\) (1 +	
	٨١
	公章
	-
经办人:	年 月 日
I and the second	

注释

本报告表应附以下附图、附件:

附图 1 项目地理位置图

附图 2 项目周边关系图

附图 3 项目平面布置图

附图 4 项目所在地与生态红线位置关系图

附图 5 项目所在地与"四区一线"位置关系图

附图 6 徐水区声功能区划分结果图

附件1 营业执照

附件2 备案信息

附件 3 建设单位委托书

附件 4 建设单位承诺书

附件 5 地类意见

附件6 检测报告

附件7 租赁协议

附件8 土地证明材料

附件9 专家评审意见

附件10项目审批基础信息表